Solutions to Elements of Programming Interviews, Chapter 4
To improve my interview problem-solving capabilities, I began to study “Elements of Programming Interviews”, by Adnan Aziz, Tsung-Hsien Lee, and Amit Prakash. This first chapter had many difficult bit manipulation and low-level math problems. Often, the solution was breaking a bit problem down using divide-and-conquer and memoizing the result in a cache with the smaller sample size.
Test class
class TestClass2:
def compare(self, f, inp, exp):
assert (bin(f(int(inp, 2))) == bin(int(exp, 2)))
def compare2(self, f, inp1, inp2, exp):
assert (bin(f(int(inp1, 2), int(inp2, 2))) == bin(int(exp, 2)))
def test_4_2(self):
assert (first(int("10100000", 2)) == int("10111111", 2))
def test_4_3(self):
assert (second(129, 64) == 1)
def test_4_4(self):
assert (third(2) == True)
assert (third(3) == False)
assert (third(52) == False)
assert (third(64) == True)
def test_4_5(self):
assert (fourth(int("01001001", 2), 1, 6) == int("00001011", 2))
def test_4_6(self):
self.compare(fifth, "1011100", "1011010")
self.compare(fifth, "1011110", "1011101")
self.compare(fifth, "111", "1011")
def test_4_7(self):
self.compare(fifth_faster, "1011100", "1011010")
self.compare(fifth_faster, "1011110", "1011101")
self.compare(fifth_faster, "111", "1011")
def test_4_8(self):
self.compare2(sixth_better, "10", "10", "100")
self.compare2(sixth_better, "01101011", "0100010", "111000110110")
def test_4_8(self):
self.compare2(seventh, "0101000", "01011", "11")
4.1 Variant
def first(x):
y = x ^ (x-1)
y >>= 1
x ^= y
return x
def second(x, y):
return x & (y-1)
def third(x):
return (x & (x-1)) == 0
4.2
def fourth(x, i, j):
if (x >> i & 1) != (x >> j & 1):
x ^= 1 << i
x ^= 1 << j
return x
4.4
def fifth(x):
for i in range(63):
if ((x >> i) & 1) != ((x >> (i+1)) & 1):
return x ^ ((1 << i) | (1 << (i+1)))
return None
def fifth_faster(x):
if x & 1 == 0:
y = x
else:
y = ~x
lowest = y & ~(y - 1)
z = lowest | (lowest >> 1)
return x ^ z
4.5
def sixth_better(x, y):
def add(a, b):
c = 0
sm = 0
k = 1
tmpa, tmpb = a, b
while tmpa != 0 or tmpb != 0:
aa, bb, cc = a & k, b & k, c & k
digit = aa ^ bb ^ cc
cin = (aa & bb) | (aa & cc) | (bb & cc)
sm |= digit
k <<= 1
c = cin << 1
tmpa >>= 1
tmpb >>= 1
return sm | c
s = 0
while x != 0:
if x & 1:
s = add(s, y)
x >>= 1
y <<= 1
return s
4.6
def seventh(x, y):
power = 32
quot = 0
while x >= y:
while y << power > x:
power -= 1
quot += 1 << power
x -= y << power
power -= 1
return quot
4.7
def eighth(x, y): # x^y
res = 1
while y != 1:
if y % 2 == 0:
x _= x
y /= 2
else:
res _= x
y -= 1
return res